
	
 1	

	

R	
 Workshop,	
 Session	
 5	

Publication-­‐Quality	
 Graphics	

by	
 Rebecca	
 Clark,	
 once	
 again	
 by	
 standing	
 on	
 the	
 shoulders	
 of	
 many	
 other	
 R	

aficionados	

	
 2	

Session 5, Lesson 1. Publication-Quality Graphics With base
and lattice

This material has been adapted from Paul Murrell’s book, R Graphics. I highly
recommend the book.

1.A. Overview
There are two major methods for producing graphics in R, base graphics and grid
graphics. So far, we have worked with base graphics, which are generated in the same
way you would draw with ink on paper. You build up an image by drawing fixed things
on it, and things that are drawn are permanent, although you could cover them with
something else or move on to a clean sheet of paper if they got too ugly. They allow easy
production of good quality scientific plots.

The grid package is the basis for newer graphics systems. You have access to the
individual pieces of a graph and can modify them - it's more like a physical model being
built and displayed, rather than just drawn. Both the lattice and ggplot2 packages
provide functions for high-level plots based on grid graphics. It’s possible to use both
packages without knowing about any of the underlying grid concepts, but in some cases
there can be benefits to viewing the plots as grid output.

Note that grid graphics are designed to be "device independent." Directions are given for
where to draw, and these commands work on any device, but the actual appearance will
depend on the device (e.g. paper vs. computer screen) because the capabilities of different
devices vary.

1.B. Base graphics: high-level functions
Simply use these to describe the plot, and R will draw it. See the accompanying script
file for examples.
barplot()
dotchart()
pie()
hist()
boxplot()
plot() # use type="" to indicate plot type; look at ?plot and ?par for other optional
arguments
qqplot() # Used for examining univariate or bivariate distributions

Which to use? Consider the type of data, your audience, and how one’s visual system
decodes the graph. People are good at eyeballing lengths and positions, not as good at
slopes and angles, and bad at areas, volumes, and shades of color. So bar lengths and
areas are easy as bar charts (be careful to base them at zero!), dot charts are better for
indicating positions, and pie charts aren't a good idea, period.

	
 3	

1.C. Base graphics: Low-level functions
Use these to annotate your plot:
points(x, y, …)
lines(x, y, …)
text(x, y, labels, …) # Adds text into the graph
abline(a, b, …) # Adds the line y=a + bx
abline(h=y, …) # Adds a horizontal line
abline(v=x, …) # Adds a vertical line
polygon(x, y, …) # Adds a closed and possibly filled polygon
segments(x0, y0, x1, y1, …) # Draws line segments
arrows(x0, y0, x1, y1, …) # Draws arrows
symbols(x, y, …) # Draws circles, squares, rectangles, stars, thermometers, boxplots
legend(x, y, legend, …) # Draws a legend

Elements outside the plot region
title(main, sub, xlab, ylab, …) # Adds a main title, subtitle, and x- and/or y-axis labels
mtext(text, side, line, …) # Draws text in the margins
axis(side, at, labels, …) # Adds an axis to the plot
box(…) adds a box around the plot region

1.D. Setting graphical parameters
You have two chances to do this: when opening the plotting device, e.g.
windows(…) # For MS Windows machines
x11(…) or X11(…) # Opening a screen device in Unix-like systems
quartz(…) # Mac OSX
postscript(…) # Opening a file for Postscript output for printing
pdf(…)
jpeg(…)
png(…)

And after the device is open, you can use the par(…) function to set graphical
parameters. There are a TON of options, but here are some highlights:
mfrow=c(m, n) # Draw m rows and n columns of plots
mfg=c(i, j) # Draw the next figure in row i and column j next
ask=TRUE # Tell you before erasing a plot to draw a new one
cex=1.5 # For Character EXpansion; there are separate cex.axis/etc. parameters for
specific text regions
mar=c(side1, side2, side3, side4) # Sets margins to the given numbers of lines of text on
each side
oma=c(side1, side2, side3, side4) # Sets the outer margins outside the array of plots
usr=c(x1, x2, y1, y2) # Sets the coordinate system within the plot with x and y
coordinates on the given ranges.

You can use par in several ways depending on how you put together the arguments:
par("mfrow") # Will tell you the current value
par(mfrow=c(1,2)) # Lets you set one value.

	
 4	

1.E. Saving Your Output
If you want to save output, open a plotting device that will do this (postscript, pdf, jpeg,
png, pictex, xfig, bitmap, win.metafile, bmp…). To finish and close the plotting
device, use dev.off() at the end.

The output format will dictate whether multiple pages are supported - for instance,
PostScript and PDF will allow it, but PNG will not. It's often possible to instead specify
that each page of output produce a separate file with the argument onefile=FALSE.
Then specify a pattern for the filename like file="myplot%03d" so that %03d is
replaced by a three-digit number (padded with zeros)

	
 5	

1.F. The lattice package
The lattice package implements the Trellis Graphics system, with some extensions.
Simple uses work and look like traditional graphics functions. So, why bother?

1. Superior default appearance - e.g. default symbols make it easier to distinguish
between groups, and there are subtle improvements like horizontal y-axis tick
labels
2. There are powerful extensions of plots.
3. The output is grid output, so you can use powerful grid features for annotating,
editing, and saving graphics output.

Lattice plotting functions tend to have long lists of arguments, but can produce a wide
range of different types of output. Many of the arguments are shared, so look at the help
documentation for xyplot() as a starting point for explanations. Note that lattice plots use
a formula argument, which can vary considerably. This is extremely handy for complex
types of data.

Lattice function Traditional analogue,
where it exists

barchart() barplot()
bwplot() boxplot()

densityplot() none
dotplot() dotchart()

histogram() hist()
qqmath() qqnorm()
stripplot() stripchart()

qq() qqplot()
xyplot() plot()

levelplot() image()
contourplot() contour()

cloud() none
wireframe() persp()

splom() pairs()
parallel() none

We’ll do the bulk of our exploration of lattice plots in the accompanying script file, but
here are several additional hints for tweaking lattice plots.

Parameter settings
Organized in parameter groups:
 plot.line(col, lty, lwd)
 plot.symbol(cex, col, font, pch)
Some have "global" effects, like font size. Others are more specific, like
strip.background.

	
 6	

Arranging plots
To arrange panels and strips within a plot: examine the layout and aspect arguments.
 layout=c(rows, columns, pages)
 aspect=1 #square panels

Adding output
Use trellis.focus() to return to a particular panel or strip of the current lattice plot, then
add further output with llines() or lpoints(), for instance.

	
 7	

Session 5, Lesson 2. Publication-Quality Graphics with
ggplot2

2.A. Overview
As mentioned earlier, ggplot2 relies on the grid graphics system, but it uses a different
approach and syntax for creating graphics. It was built as an extension of Wilkinson’s
“grammar of graphics” (2005), and is based around thinking about why we create
visualizations – to better understand our data. Since visualization is just part of the data
analysis process, it needs to be coupled with transformation and modeling to build
understanding. ggplot2 was designed with this in mind.

The process of using ggplot2 involves thinking about how your data will be presented
visually, and then describing that representation using a declarative language built out of
a set of independent building blocks, kind of like nouns and verbs, that allow you to build
up a plot piece by piece.

Hadley Wickham, the author of ggplot2, also notes that there are some major benefits
to the fact that ggplot2 is code-based and programmable, unlike many other
visualization tools that rely on a graphical user interface. Programmability (as you have
hopefully already noticed) facilitates reproducibility, automation, and communication –
all key to good science. It also simplifies the process of iteratively updating figures.

2.B. Getting started
There is a basic plotting function, qplot(), designed to function in a manner similar to the
plotting functions for base graphics. However, in the interest of covering the ggplot2
grammar, we are going to skip over working with qplot(). The chapter from Wickham’s
book on ggplot2 that covers qplot() is available through the ggplot2 documentation
site:

http://docs.ggplot2.org/current/qplot.html

The Grammar
A layered grammar defines a plot as a combination of elements, listed here and described
in greater detail below.

• A default dataset, plus a set of mappings from variables to aesthetics
• One or more layers, each composed of: a geometric object, a statistical

transformation, and a position adjustment (plus, optionally, a dataset and aesthetic
mappings)

• One scale for each aesthetic mapping
• A coordinate system
• The faceting specification

ggplot2 goes through a series of steps to process data based on these concepts, and in
the end the processed data are used to render geoms, the geometric shapes within the plot
(points, lines, polygons, box plots, error bars, etc…).

	
 8	

2.C. ggplot2 geoms
For translating between ggplot2 and the other plotting packages, it’s easiest to compare
the other plotting packages to ggplot2’s geoms, although note that deciding upon a geom
happens later in the plotting process as compared to choosing a function in lattice or base
graphics. See also: http://docs.ggplot2.org/current/translate_qplot_lattice.html

Lattice
function

Traditional
analogue

ggplot2 geom

barchart() barplot() geom_bar(), geom_bin2d()
bwplot() boxplot() geom_boxplot()

densityplot() none geom_density(), geom_density2d()
dotplot() dotchart() geom_dotplot()

histogram() hist() geom_histogram()

qqmath() qqnorm()
Slightly complicated. See here:

http://stats.stackexchange.com/questions/12392/how-to-
compare-two-datasets-with-q-q-plot-using-ggplot2

stripplot() stripchart() geom_point(position = “jitter”)
qq() qqplot() *stat_qq(), or use qplot(sample = y)

xyplot() plot() geom_point()
levelplot() image() geom_tile()

contourplot() contour() stat_contour(), geom_density2d()
cloud() none none

wireframe() persp() none
splom() pairs() See ?plotmatrix()

parallelplot() none

Requires data manipulation. See here:
http://learnr.wordpress.com/2009/07/15/ggplot2-version-
of-figures-in-lattice-multivariate-data-visualization-with-

r-part-5/

2.D. Basic syntax
Two pieces of the above description drive ggplot2’s flexibility and efficiency, layers and
aesthetic mappings. A ggplot2 object is composed of one or more layers, each
containing a different graphical object, or grob.

The ggplot() function defines the plot’s base layer, including the name of the input data
frame and associations between a subset of its variables and their roles in the graph (base
mappings).

ggplot(iris, aes(Sepal.Length, Sepal.Width))

This won’t produce any output, however, because it doesn’t specify the geometry we
want to use to display the data – points, lines, boxplots, barplots – any of the options from
the table above, or even more (see the online documentation at http://docs.ggplot2.org).

	
 9	

That requires a second element added to the command:

ggplot(iris, aes(Sepal.Length, Sepal.Width)) + geom_point()

The geom does not need any arguments because it will take the relevant information (data
and aesthetic mappings) from the default provided in the base layer. It’s possible to keep
adding additional layers, too – say, geom_smooth() to add a smoothed “conditional
mean.” [fyi, The default fit for geom_smooth() is “loess” for smaller sample sizes
(<1000) and “gam” for larger sample sizes.]

Each geom function has arguments that can be used to control the geom’s appearance.
For example, you can specify a linear fit, without a standard error by using
geom_smooth(method=”lm”, se=FALSE).

2.E. geoms versus stats
In ggplot2, geoms are functions that convert transformed numeric data into some type of
geometric object (points, lines, bars, box plots). The functions that do the
transformations are called stats. While stats and geoms are independent of one another,
every geom has a default stat (e.g. stat_bin is used for geom_bar and geom_histogram),
and stats have default geoms (e.g. geom_ribbon() and geom_smooth() for
stat_smooth()), and sometimes you may have reasons to call a stat directly to tinker with
a data transformation and then specify a consequent geom. Note also that
stat_summary() is something of a special case – see some of the additional resources
listed at the end for more details if you want precise control of the presentation of
summary statistics.

2.F. mapping vs. setting
Sometimes you may want to use an object’s attributes to symbolize something about it –
say, using an object’s color, shape, or size to distinguish it from other objects. In those
cases, in the ggplot2 parlance, you are mapping that characteristic from within the
aesthetics function (aes()). In contrast, at other points you may wish to just display
everything with a fixed attribute of some particular sort – say, changing the default shape
to triangles. In this case, you should set that characteristic within the relevant geom layer
(e.g. geom_point(shape=17)).

Now, take a look at some examples in greater detail in the accompanying sample script.

2.G. Polishing your plots
Guides
A guide is a graphical object that aids in the interpretation of a statistical graphic. The
two classes are positional, and nonpositional. Axes are positional guides, referring to the
range of values in a single direction for a continuous variable, or to levels of a discrete
factor. Nonpositional guides usually have to be indicated with the help of a legend, to
illustrate the relationship between individual values of an aesthetic and the corresponding
variable values. Use the guides() function to manipulate aspects of a legend or color bar
guide.

	
 10	

Scales
Scale functions are used to control the rendering of a guide, and all generally allow the
specification of: breaks, values, and labels. Positional axes tend to have the form
scale_dir_type, as in scale_x_discrete, or scale_y_continuous. There are some built-in
scale transformations as well (scale_x_log10), but most scale transformations need to be
defined through the scales package. To adjust legend-related scale functions, use scale
functions of the form scale_aes_type – i.e. scale_fill_gradient or scale_colour_manual.

Themes
The theming system controls non-data aspects of the plot. This system got a major
overhaul in version 0.9.2, so Wickham’s book is no longer the best source of information
for how to update these aspects of plots. To observe the defaults, use theme_get() –
similar to using par() for base graphics. You can set the theme globally with
theme_set() or adjust the theme for a specific piece of a specific plot by adding +
theme() details to the plot object. There are also several default themes to choose
among. The initial one is theme_grey(), chosen based on specific aesthetic principles;
theme_bw() may get you fairly close to a plot ready for scientific publication. I tend to
put the following at the beginning of my R script files to generate my desired default
appeareance:

theme_set(theme_minimal())
theme_update(axis.line = element_line(),
panel.grid.major=element_blank(),
panel.grid.minor=element_blank(),
strip.background=element_rect(colour="gray"))

Axis and Main Titles
Modify with xlab(), ylab() and ggtitle(), or use labs(x = “X thing”, y = “Y thing”, title
= “Main title”)

Positional adjustments
Use to avoid overplotting – implement with geom_jitter() or use position= “jitter”
within geom_point().
Also use to arrange elements of bar charts (position = stack, dodge, fill, or identity)

Coordinate systems
Cartesian (default): coord_cartesian
Equal-scale Cartesian coordinates: coord_equal
Swap x and y: coord_flip
Transformed Cartesian coordinates: coord_trans
Map projections: coord_map
Polar coordinates: coord_polar

	
 11	

Annotations
Plots can be embellished with things like text labels, fitted equations, P values, tables,
pictures, or even inset graphics. See the documentation at docs.ggplot2.org for
annotate().

2.H. Faceting
This is the ggplot2 alternative to trellis plots. There are two functions, facet_wrap() and
facet_grid(). facet_wrap() allows conditioning with one added variable, reshaping a 1D
ribbon of plots into a 2D arrangement – use ncol or nrow to control exact arrangement.
facet_grid() uses formula notation to generate a 2D grid of graphics panels by column
and/or row – as in, facet_grid(rows ~ columns). Note that there are different options for
scales when faceting – they can be “fixed” (the default, all facets have identical scales),
“free_x”, “free_y”, or “free”. The default arrangement (as.table=TRUE) is to place the
highest values in the lower-right corner; if this is set to as.table=FALSE, the plots are
rearranged with the highest value in the upper right.

2.I. Arranging multiple plots, saving plots
One method for arranging multiple plots involves the use of the annotation_custom()
function, in conjunction with some functions from the grid and gridExtra packages.
These allow you to assign the plot information itself to an object, as follows:

g <- ggplotGrob(plot) # The image information is saved as
“g”

Then:
p + annotation_custom(grob = g, xmin = 20, xmax = 48, ymin
= -330, ymax = 640)

But note that this gets complicated for faceted plots. The gridExtra package is also
useful for positioning multiple plots on a page without having to learn the details of grid
graphics. Once each plot is saved as an R object (as illustrated above), they can all be
combined in one page with grid.arrange():

grid.arrange(plot1, plot2, plot3, plot4, ncol=2)

Lastly, the ggsave() function can be used to save the current plot – it’s a wrapper for:

pdf(“myplot.pdf”)
print(p) # Where p is a ggplot object
dev.off()

There are more options in the ggsave() help documentation (e.g. size, file format, etc).

	
 12	

Resources and References

Another thorough introductory tutorial, with more examples:
http://jofrhwld.github.io/avml2012/

The online documentation for ggplot2 is an invaluable reference tool once you have some
practice: http://docs.ggplot2.org

A library of lattice graphics from Lattice: Multivariate Data Visualization with R,
reproduced in ggplot2. Start here and work forwards or backwards:
http://learnr.wordpress.com/2009/07/15/ggplot2-version-of-figures-in-lattice-
multivariate-data-visualization-with-r-part-5/
 Or see this for a pdf version of the whole (amazing!) project:
http://learnr.wordpress.com/2009/08/26/ggplot2-version-of-figures-in-lattice-
multivariate-data-visualization-with-r-final-part/

ggplot2 wiki on Github: https://github.com/hadley/ggplot2/wiki

Chang, W. 2012. R Graphics Cookbook. O’Reilly Media, 416 pp. Companion website:
http://www.cookbook-r.com/Graphs/

Ito, K., & D. Murphy. 2013. Application of ggplot2 to pharmacometric graphics. CPT:
Pharmacometrics & Systems Pharmacology 2, e79. Doi:10.1038/psp.2013.56

Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis (Use R!). Springer,
Berlin, 213 pp.

Wilkinson, L. 2005. The Grammar of Graphics (Statistics and Computing), 2nd edition.
Springer, Berlin, 690 pp.

