EEB Open Source for Open Science 2014

Scientific Programming Using @@

Thomas Olszewski
Geology and Geophysics

@2 variables & Assigning Values

Variable = a ‘place’ in memory to store a value

value to be stored
> X <- 0.4

: : assignment operator
variable name (can include 5 P

any alphanumeric symbol,
but must start with a letter)

An operator is a symbol that makes the computer do
something — the assignment operator assigns the given value
to the declared variable. This is NOT the same as an equal
sign in a mathematical equation (as we will see).

Arithmetic Operators EEB OSOS 2014

VVYV VYV

a+b
a-b
a*b
a/b
a’b

- Addition a=6,b=2:

- Subtraction What does a*b equal?
- Muultiplication > a*b

- Division [1] 12

- Exponentiation

a=6,b=2,c=1,d=2:
What does a/b*(c+d) equal? 1 or 9? Why?

> a/b*(c+d)

@ Order of Operations

(a=6,b=2,c=1,d=2)
What does a/b*(c+d) equal? 9.

> a/b*(c+d)
[1] 9

The value of depends on the order of operations. In most

computer languages, including R, the order of arithmetic
operations from is:

1) left to right To get an answer of 1, an
2) parentheses additional set of

3) exponents and roots parentheses is needed:
4) multiplication and division > a/(b*(c+d))

5) addition and subtraction [1] 1

@ Creating Functions

Functions are used to package a series of commands. A function
is @ program or script that carries out a particular task.
Prepackaged commands in R are examples of functions, but you
can also create your own.

function name
assignment operator _parameter — one or more values

passed to the function (can be

> foo <~ function(x) { left blank if no parameters

+ a <- X , ,

+ b < 3 series of command in

+ C <- a*b squiggly brackets

+ #unread comment < lines beginning with “#” are ignored —
+ return(c) useful for comments and instructions
+) this command spits out the

result of the function

Running Functions EEB OSOS 2014

> foo Typing the name of the
function(x) { function returns its contents

a <- X (this works for prepackaged

b <- 3 functions as well as your own).
C <- a*b

return(c)

¥

Typing the name of the function() and
> foo(2) passing it a parameter value results in
[1] © the commands being carried out.

Editing EEB OSOS 2014

Functions written elsewhere and

> source(“foo.R”) saved as text files can be loaded
into a workspace using the source()
command.

The edit() command will open

> foo2 <- edit(foo) any object — a function, a
dataframe, a matrix, etc. — and

> X.2 <- edit(X) allow you to change it (including
prepackaged functions). The new
version will be saved to the
assigned name.

€ 2) Creating Vectors EEB OSOS 2014

Vector = a series of values

e values to be stored
<- C(Z 5,8,11,2)

/ / a function that combines

name (and
(. assignment 5roments into a series

> Y
[1] 2 5 8 11 2

@ Vector Index Numbers

How does one access individual values?

By using index numbers.

> Y
[1] 2 5 8 11 2

square brackets
vector name

>*y[2]
[1] 5

index

Individual values can be reassigned:
> y[3] <- 28

> Y
[1] 2 5 28 11 2

The critical difference
between an index number
and the actual value is that
an index number refers to a
particular slot in a vector
(or other object), whereas
the value is what is found in
that slot.

Using Sequences EEB OSOS 2014

Subsets of the vector can be drawn
by referring to multiple indices:

> y[c(2,4,5)]

[1] 5 11 2
“" is an operator that generates a

> y[2 ;ZH/ sequence of integers from:to with

[1] 5 28 11 a step size of 1.

N U1

>
[1

w
N
Ul

2:
]
4:2

14 3 2

>
[1

10

Creating Matrices EEB OSOS 2014

Matrix = a table of values valuesto number number
be stored ofrows of columns

e

> X <- matrix(1:12,nrow=3,ncol=4)

TN

name (and assignment function that

declaration) operator creates matrices
> X

[,11 [,2]1 [,3] [,4]

1,] 1 4 / 10

2,] 2 5 3 11

(3,] 3 o 9 12

11

Matrix Index Numbers EEB OSOS 2014

How does one access individual values?
Again, by using index numbers.

/rowindex
> X[2,34—column index
[1] 8

Entire rows or columns can be referenced by leaving the
index blank.

> X[2,] Note that each of these is a vector.
[1] 2 5 8 11

> X[, 3]
[1] 7 &8 9

12

Matrix Subsets EEB OSOS 2014

Subsets can also be referenced and values can be changed:

> X[2:3,3:4]
2
21 9 12 > X

[,1] [,21 [,3]1 [,4]

>X[cE1£)|,:C%,4):| :%’; % g i?
[1] 4 10 S R .

[2] o 12

13

@ Loops

Loops are used repeat a series of commands.
index variable or “counter”

A = C(“H” , “A” : “p» : «p» , “Y”)
for (1"1in 1:5) {
print(1*2)

E:r'int(A[i]) number sequence

-

+ + + VvV V

squiggly brackets

i is a variable that starts with the first value in the number
sequence. Each command after “{” is carried out in succession.
Every time the full succession is done (i.e., it hits “}”), i goes to
the next value in the number sequence and each of the
commands is repeated. Commands can change depending on

the value of i. The loop will continue to repeat until i reaches the
last value in the number sequence.

Nested Loops EEB OSOS 2014

Nested loops are “loops within loops” — they provide a means of
working with objects that have multiple indices.

> X = matrix(0,nrow=12,ncol=9) indentingthe body of a
> .For. (1 -L N 1 . 12) { loop is regarded as good
. . programming practice
+ for (J 1n 1: 9) '{ because it is a good way
- - _ 1 %9 to keep track of the
: } X l:l) J:l < L J structure of the program.

+)

What happens: first, i equals 1; j equals 1 and X[1,1] is assigned 1*1; next j
equals 2 and X[1,2] is assigned 1*2; j equals 3 and X[1,3] is assigned 1*3...until
jequals 9. Now the first sweep through the i-loop is done and i becomes 2,
but the j-loop starts again (the previous sweep is done and forgotten), soj
equals 1 and X[2,1] is assigned 2*1; j equals 2 and X[2,2] is assigned 2*2...etc.
Each time the j-loop is completed, the i-loop steps one value further and the
whole set of commands (including the j-loop) within the i-loop is repeated.

@ Comparing Values

Comparison Operators

> d==Db - Equal
> al=b - Not equal
> a>b - Greater than
> a<b - Less than
> a>=b - Greater than or equal
> d<=b - Less than or equal

> 3>7 > 3==/
[1] TRUE [1] FALSE
> 3<2 > 31=2

[1] FALSE [1] TRUE

These operators result in
a value of TRUE or FALSE.

Note that in typical use, an
equal sign ‘=" can mean either
assignment of a value OR a
logical statement that is
either true or false. These
two roles have different
operators: ‘<-" and ‘==,
respectively. InR, = is
equivalent to assignment, but
it is regarded as poor form
(except when setting
arguments in a function call).

@ Conditional Statements

Conditional statements are used to compare values.

comparison resulting in TRUE

i g :_ g or FALSE (a logical value)
> 1t (a>=b) { squiggly bracket

1 C\/TET)
N ?ré?zg J::lL TORY™) commands to perform
+ Pr'int(“FAILURE”) if condition is true
+ } commands to perform
[1] “VICTORY” if condition is NOT true

The if-else framework carries out one series of commands if
a condition is TRUE and another if the condition is not TRUE.
The () define the condition and the {} define the commands.

@ Multiple Comparisons

Logical Operators (Boolean Algebra)

> (a>b) & (c>d) - And: TRUE if both conditions are TRUE
> (a>b) | (c>d) -Or: TRUE if one or other condition is TRUE
> (a>b) - Not: Changes TRUE to FALSE and vice-versa

> (3>2) & (554) T > (3>2) & 1(5>4) F
> (3>2) & (5<4) F > (3>2) & 1(5«4) T
> (3<2) & (5<4) F > (3<2) & 1(5<4) F

> 1(3<2) & '(5<4) F

These operators compare the truth
value of multiple comparisons and
result in a value of TRUE or FALSE.

> (3>2) (5>4) T
> (3>2) (5<4) T
> (3<2) (5<4) F

Logical Values EEB OSOS 2014

> 3*%(4<5) In R, logical values (i.e., comparisons resulting
1] 3 #3*1 in TRUE or FALSE) are assigned numerical
> 3*%(4>5) values: TRUE = 1 and FALSE = 0, allowing them

1] 0 #3*@ them to be manipulated as values.

Comparisons can be applied to vectors of values.

> x <- ¢(2,6,3,8,5,3)
> X > 4
[1] FALSE TRUE FALSE TRUE TRUE FALSE

Vectors of logical values can be used to subset vectors, etc.
> x <- ¢(2,6,3,8,5,3)

>y <- X >4

> x[y]

[1] 6 8 5

19

