
 1

R Workshop, Session 1

A Basic Introduction to R
by Rebecca Clark, but only by standing on the shoulders of many other R aficionados

 2

Session 1, Lesson 2. A Basic Introduction to R

R will not read anything preceded by #. When analyzing data, it is useful to use # to include a lot of
comments so you can remember what you did.
R input is preceded by >
R output is preceded by [some number]

2.A. Using R as a calculator:
> 2+3+4+9
[1] 18

> 144^2
[1] 20736

> (144^0.5)/2*10
[1] 60

> sqrt(100)
[1] 10

> log(5) # log in R equals the natural log (i.e. ln)
[1] 1.609438

> pi*4
[1] 12.56637

2.B. Handy functions
> data <- c(2,2,4,4,5,5,6,6,7,8,8,8,8,9,9,10,10,12,12,12,12)
the c means “concatenate” which means individual numbers are
joined together in a vector. R really likes concatenated data.
> data
[1] 2 2 4 4 5 5 6 6 7 8 8 8 8 9 9 10 10 12 12 12 12
yep it’s there!
> mean(data)
[1] 7.571429
> min(data)
[1] 2
> max(data)
[1] 12
> range(data)
[1] 2 12
> sd(data)
[1] 3.1713
> var(data)
[1] 10.05714
> length(data)
[1] 21

 3

2.C. Basic plotting
> hist(data) # you should see a histogram pop up in the graphics
device.

x <- c(1,3,4,6,8,9,12,14)
y <- c(5,6,8,10,9,13,12,15)
plot(x, y)

add some x and y labels:
plot(x,y, xlab="Explanatory Variable", ylab="Response Variable")

change the symbol color:
plot(x,y, xlab="Explanatory Variable", ylab="Response Variable",
col="red")
for a full list of colors:
colors() # test some of these out

change the symbol type with pch (stands for “point character”)
plot(x,y, xlab="Explanatory Variable", ylab="Response Variable",
col="red", pch=16)
plot(x,y, xlab="Explanatory Variable", ylab="Response Variable",
col="red", pch=”m”)

to see the symbols, you need to install a package once you have
access to the internet.
> install.packages(“Hmisc”) # select the closest CRAN mirror from
the list. R will access the CRAN website and download this
package to your “libraries” folder in the R program file. This
only has to be done once.

when you start R, it will only start the base package. If you
want to use a function in a package other than the base you must
access it from the library folder:
> library(Hmisc) #now you can use the functions in this package
> show.pch()
 0

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31

 32
! 33
" 34
35
$ 36
% 37
& 38
' 39
(40
) 41
* 42
+ 43
, 44
- 45

46
/ 47
0 48
1 49

2 50
3 51
4 52
5 53
6 54
7 55
8 56
9 57
: 58
; 59
< 60
= 61
> 62
? 63
@64
A 65
B 66
C 67
D 68
E 69
F 70
G 71
H 72
I 73
J 74

K 75
L 76
M 77
N 78
O 79
P 80
Q 81
R 82
S 83
T 84
U 85
V 86
W87
X 88
Y 89
Z 90
[91
\ 92
] 93
^ 94_ 95
` 96
a 97
b 98
c 99

d100
e101
f 102
g103
h104
i 105
j 106
k 107
l 108

m109
n110
o111
p112
q113
r 114
s 115
t 116
u117
v118
w119
x120
y121
z122
{ 123
| 124

} 125
~126
� 127
€128
. 129
‚ 130
ƒ131
„ 132
…133
†134
‡135
ˆ 136

‰137
Š138
‹ 139

Œ140
. 141
Ž142
. 143
. 144
‘ 145
’ 146
“ 147
” 148
• 149

–150
—151
˜ 152

™153
š154
› 155

œ156
. 157
ž158
Ÿ159
 160
¡ 161
¢162
£163
¤164
¥165
¦ 166
§167
¨ 168
©169
ª170
«171
¬172
- 173
®174

¯175
° 176
±177
²178
³179
´ 180
µ181
¶182
·183¸ 184
¹185
º186
»187
¼188
½189
¾190
¿191
À192
Á193
Â194
Ã195
Ä196
Å197
Æ198
Ç199

È200
É201
Ê202
Ë203
Ì 204
Í 205
Î 206
Ï 207
Ð208
Ñ209
Ò210
Ó211
Ô212
Õ213
Ö214
×215
Ø216
Ù217
Ú218
Û219
Ü220
Ý221
Þ222
ß223
à224

á225
â226
ã227
ä228
å229
æ230
ç231
è232
é233
ê234
ë235
ì 236
í 237
î 238
ï 239
ð240
ñ241
ò242
ó243
ô244
õ245
ö246
÷247
ø248
ù249

ú250
û251
ü252
ý253

 4

2.D. Basic t-test: Getting started
create a fake dataset
> length <- c(1.2, 1.3, 1.6, 1.4, 1.1, 2.0, 2.1, 2.8, 3.0, 2.6)
> gender <- rep(c(“male”, “female”), each=5)

> plot(length, gender)
this may generate an error message because R may not know the
correct class to assign to “gender”. Check the class:
> class(gender)
How to reassign it:
> gender <- as.factor(gender)
Test this
> gender

> plot(gender, length)

Summarize the data
> mean(length)
> sd(length) # Standard deviation

What if we want the mean and standard deviation for each gender?
We need to “subset” the data:
length[gender == “male”]
R translation: “give me the length data for the males”. Brackets are used for subsetting data in R
(more on this later). Subsetting is a critical, and often annoyingly difficult process in R. Notice that
double = signs are required. Notice that “male” is in quotes.
> mean(length[gender == “male”])
> sd(length[gender == “male”])
> mean(length[gender == “female”])
> sd(length[gender == “female”])
Or, how about a loop?
tapply(length, gender, mean)

tapply is one of the “apply” functions. This suite of functions performs different types of loops. In
this case, the loop goes through each category of “gender” and applies the function “mean” to the
“length” data.

 5

2.E. Obtaining more information about functions
Our goal is to analyze the data using a t-test to determine whether males and females have
significantly different lengths. First, we need to figure out which function to use to accomplish this.
Sometimes (often) you won’t know the name of the function for a particular analysis. From within
R, there are a few ways to look:
help.search(“t-test”)
The problem is that you will often get zero, or way too many hits. If help.search() fails, you may
want to search online instead. Once you know the name of a function, you can use the ? or help to
find out more:
?t.test
help(t.test)
This should open a help window with documentation for the function. At first, these windows may
seem cryptic and useless, but after some time, you will probably start to rely on them heavily (I sure
do!). I find the See Also and Examples sections especially helpful. Note that the Usage section tells
you exactly how to execute the command (expected arguments, etc.), and details of the required
arguments are given in the Arguments section.

Also try the example function to see the function in action, if it has an example:
example(t.test)

2.F. Conducting the t-test
t.test(length~gender)
Almost all models are defined in R with this syntax. It translates to: “length” as a function of
“gender”, or Y(response)~X(predictor/s).
Note that the returned results are for a “Welch Two Sample t-test.” If you look at the function
description, you’ll see that the default analysis assumes the variances between the two groups are
not equal (var.equal=FALSE). The output also returns 95% confidence intervals. These settings
can be changed:
t.test(length~gender, var.equal=TRUE, conf.level=0.90)

2.G. Closing R
R will ask:
Save workspace image? [y / n / c] #Generally, choose n.

 6

Session 1, Lesson 3. Loading Data

3.A. The Working Directory
What is the working directory? It is the location on your computer that R is working from – where
it will read in files, and where it will write files. To determine the current working directory on
your computer:
getwd()
[1] “/Users/username”

It may help to imagine this as the room that R is in. It can see everything in the room, so you can
refer directly to the things in the room. Otherwise, you have to tell R how to get to things that are
outside of the room.
dir()
[1] “Applications”
[2] “Documents”
[3] “Downloads”
[4] “Movies”
[5] “Pictures”
[6] “chicken painting.jpg”
…

To change the working directory:
setwd(“~/Documents/RebeccaClark/R Manuals/OSOS Workshop
Materials/”)
dir()

Now R will look in this directory for files and will also save to this directory.

Important things to notice:

1. I checked to make sure the function worked by using dir() to see if the correct files were
listed.

2. If you are on a PC, try to get in the habit of using forward slashes “/” instead of back slashes
“\” because back slashes are used as an escape character in R. See the documentation for
?Quotes for more details.

3. It’s usually simplest to copy and paste in the file pathway to avoid typing errors.

 7

3.B. Types of Data

Use class() to check

R class Other terms Examples
Numeric Real, continuous,

quantitative
1.34, 2.87, 1,000,005

Integer Count data 1, 2, 3, 184
Factor (ordered) Ordinal, categorical,

discrete
Good, better, best;
Large, extra large, grande

Factor (unordered) Categorical, nominal,
discrete

Red, green, blue;
Alps, Rockies, Rainier

Date 11/12/2010*
Character “accidentally smooshed”,

“fell asleep”
*Time-based data can get complicated in terms of formatting. See Data Manipulation With R, by
Phil Spector, for an in-depth treatment of the topic, if applicable.

Because R is an object-oriented programming language, the class of the data often determines how
it is handled by a particular function. For practice, make a note of how R should interpret the class
of each column in this spreadsheet:

Family Insect
Life
Stage

Feeding
Type

Sample
size

Insect
%P

Insect
N (%)

Plant
%P

Plant
%N

Drosophilidae Drosophila arizonae adult generalist 1 0.995 8.800 0.576 3.720
Drosophilidae Drosophila hydei adult generalist 1 0.880 7.650 0.576 3.720
Drosophilidae Drosophila nigrospiracula adult generalist 1 0.850 7.900 0.020 0.829
Drosophilidae Drosophila pseudoobscura adult generalist 1 1.000 8.850 0.576 3.720
Drosophilidae Drosophila simulans adult generalist 1 1.090 9.500 0.576 3.720
Acrididae Melanoplus bilituratus adult generalist 2 0.700 - 0.250 4.000

Acrididae Hesperotettix speciosus
multiple
instars generalist

1
0.631 11.080 0.249 1.643

Acrididae Melanoplus bivittatus
multiple
instars generalist

2
0.560 10.775 0.238 2.424

Acrididae Melanoplus keeleri
multiple
instars generalist

1
0.633 10.680 0.258 1.995

Acrididae Mermiria bivittata - generalist 1 0.470 10.000 0.194 1.124
Acrididae Schistocerca americana - generalist 2 0.693 9.792 0.234 2.426

Acrididae Melanoplus packardii
multiple
instars

generalist
(33 spp)

2
0.628 10.980 0.190 2.099

Acrididae Schistocerca gregaria -
generalist/
polyphagous

1
0.903 9.430 0.260 2.555

Tortricidae Choristoneura fumiferana - specialist 1 0.855 8.700 0.220 1.422
Drosophilidae Drosophila mojavensis adult specialist 1 0.840 6.700 0.190 0.800
Drosophilidae Drosophila pachea adult specialist 1 0.815 6.700 0.180 1.440
Sphingidae Manduca sexta larvae specialist 2 1.124 9.500 0.209 4.500
Noctuidae Spodoptera exempta pupa specialist 3 1.086 8.765 0.433 2.990
Diprionidae Neodiprion sertifer - specialist 3 0.640 7.270 0.117 1.303
Chrysomelidae Paropsis atomaria larvae specialist 1 0.929 6.693 0.236 1.175
Curculionidae Sabinia setosa adult specialist 1 0.557 - 0.220 2.750

 8

3.C. Data Analysis Overview
From a data analysis standpoint, here is an overview of ways to handle different kinds of data.
More details on this will follow later on.

 9

3.D. Worksheet: Importing Data into R
Open the file Excel.xls, and try to identify several issues that might be a problem when this dataset
is opened in R.

Now, save Excel.xls as a tab-delimited text file (.txt).
 File > Save As
 File name: ExcelAsText.txt
 Save As Type: Text [Tab delimited]

Open ExcelAsText.txt in R
 setwd(“C:/YourPathHere/”)
 data <- read.table(“ExcelAsText.txt”, header=TRUE, sep=”\t”)
Check out the data:
 data
 lapply(data, class) #find out the class of each column

What kinds of problems do you see? Are these the same ones you thought would be a problem?

Now, go back and try to fix any problems you have identified, repeating the process of saving the
file as a new tab-delimited text file (ExcelAsText_Fixed.txt) and reading it into R (data_tab).
Did that work?

Now, save the file as a comma-delimited text file (.csv), and open this in R to examine it.
 File > Save As
 File name: ExcelAsText_Fixed.csv
 Save As Type: CSV [comma delimited]

 data_csv <- read.table(“ExcelAsText_Fixed.csv”, header=TRUE,
sep=”,”)
 lapply(data_csv, class)
Are there any new problems?

 10

3.E. Importing Data into R: Workflow
set the working directory
setwd(“C:/YourPathHere/”)
get the data – remember to designate the separator
data <- read.table(“FileName.txt”, header=TRUE, sep=”\t”)
look at your data
data

lapply(data, class) # check that the classes of the columns match with your expectations

Things to check before converting your Excel file to text:

1. You can only have one row of headers
2. Use short descriptive headers without spaces

a. Use “_” or caps between words (i.e. first_name or FirstName)
b. Headers are typed over, and over, and over, so keep them short

3. Don’t start a header with a number
a. R will accept it, but will put an X in front of it.

4. Remove all summary data
a. Average, sum, max, min, etc.

5. Check that all values in a column are of the same type
a. Number, date, character, etc.

6. Remove commas and # symbols throughout
a. Commas will screw up comma-delimited files
b. # indicates a comment in R

7. Missing data are okay, but keep an eye on it.
8. If R throws this error:

Error in scan(file, what, nmax, sep, dec, quote,
skip, nlines, na.strings, :
 line 29 did not have 8 elements

You probably have extra lines at the end of your .txt file. Open your text file in notepad.
Move the cursor to the bottom of the file and backspace (delete) all of the extra lines. Save
and try again (remember to send the read.table line again).

Handy shortcuts to try

read.table(file.choose()) # type this in and see what happens

setwd(“~”) # resets working directory to your computer’s home
directory (escape to home directory)

setwd(“./FolderInCurrentDirectory/”) # allows you to move from the
current directory into a subdirectory

 11

 12

Session 1, Lesson 4. Manipulating Data

Once you’ve read data into R, you can begin using some of the powerful workhorse aspects of the
program to get your data organized and ready for analysis. This is where R can really shine…but
also where it’s easy to get lost and frustrated and give up. Here, we will walk through modified
exercises that were originally designed by Jack Weiss at UNC-Chapel Hill.

4.A. R functions and commands demonstrated here

• apply is used to evaluate a function separately on the rows (second argument to apply is 1) or
the columns (second argument to apply is 2) of a matrix or data frame

• attach adds a data frame to the default search path so that variables can be specified without
reference to the data frame in which they reside

• boxplot produces a box plot or side-by-side box plots of a specified variable
• c the catenation function that turns the elements making up its arguments into a single vector
• colnames returns the column names of a data frame. Can also be used to assign column names

to a data frame
• data.frame defines a data frame from its arguments which should be a set of vectors all of the

same length
• detach undoes attach, removes a data frame from the search path
• dim returns the number of rows and columns of a data frame
• dimnames returns both the row names and the column names of a data frame in a list format
• edit invokes the R editor for modifying and viewing data frames
• expression creates an object of mode expression. We used it to create a mathematical expression

in a graph axis label.
• function is not itself a function but is a key word to indicate that what follows is a function

definition
• history opens up a history window in which you can view previously issued commands. For

example, history(50) would display up to the last 50 commands issued. There is a 512 line
default limit to what is saved, although this value can be changed.

• is.na is a logical function that returns TRUE if a value is missing (NA) and FALSE otherwise
• jitter randomly adds a small value to each element of its argument
• length returns the number of elements of a vector counting both non-missing and missing values
• mean calculates the mean of individual column entries of a data frame
• names displays names of variables in a data frame
• objects displays all created objects currently in workspace
• points adds individual points to the currently active plot
• read.table reads in text data from an external file
• rep is used to create patterned vectors of repeated units
• reshape interconverts ‘wide’ and ‘long’ data sets.
• rm is used to delete objects from the R workspace
• round rounds its argument to the number of decimals specified.
• rownames returns the row names of a data frame. Can also be used to assign row names to a

data frame
• sd calculates the standard deviation of the individual column entries of a data frame

 13

• sqrt is the square root function in R
• sum calculates the sum of all entries of a vector or matrix
• tapply stands for table apply. It applies a function (3rd argument) to a variable (1st argument)

separately for each group specified by the second argument
• unlist unstacks the columns of a data frame into a vector
• # indicates a given line of code is a comment and should be ignored
• <- the assignment operator in R, a less than symbol followed by a dash, that is supposed to

symbolize an arrow. The arrow points in the direction of assignment.
• [] used for specifying elements of vectors or portions of data frames and matrices
• [[]] denotes an element of a list
• $ list notation symbol that can be used to reference columns of a data frame
• ! is the logical not operator in R
• ^ denotes exponentiation
• ? followed by a function name brings up a help window on that function
• ~ symbol used in defining expressions in R for model fitting. We used it in the boxplot function

R function options

• cex= (argument to many graphics functions) specifies the character expansion for plotting
symbols when used with the points function

• col= (argument to many graphics functions) specifies the color to use in plotting points
and/or line segments

• header= (argument to read.table) takes on values TRUE or FALSE, indicates whether the
first line of a text file contains the variables names (TRUE) or not (FALSE)

• pch= stands for print character and is used to designate the plotting symbol for use in
various plotting functions: plot, points, etc.

• na.rm= (argument to mean, sum, and sd) take on values TRUE or FALSE, indicates whether
missing values should be removed (TRUE) before performing calculations. If set to FALSE
and there are missing value the function returns NA as its value.

• outline= (argument to boxplot) when set to FALSE it turns off the display of outliers in a
box plot

• sep= (argument to read.table) specifies the character that was used to separate fields in the
text file to be read into R. For example, sep=',' indicates that the entries are separated by
commas while sep='\t' indicates that the entries are separated by tabs.

• skip= (argument to read.table) specifies the number of lines to skip in the text file before
reading the first line of data

• xlab= (argument of boxplot) a user-specified value to be used as the label for the x-axis, e.g.,
xlab="WSSTA"

• ylab= (argument of boxplot) a user-specified value to be used as the label for the y-axis, e.g.,
ylab="Disease Prevalence "

 14

4.B. Review: Data Entry
When R opens you are presented with Console window in which you can enter commands. In the
Windows operating system to move back within a command line to correct mistakes you need to
use the left and right arrow keys on the keyboard rather than the mouse. Previously issued
commands can be recalled with the up arrow key.

To read data into R from a text file, use the read.table function. For this exercise, we'll read in a file
directly from a class web site. The data files are in the following folder.

http://www.unc.edu/courses/2007spring/enst/562/001/data/lab1/

There are three files in this folder. The files contain the same data but in different formats.

NorwaySO4.xls is an Excel file. While a package exists that allows the direct importation of
Excel files (the package is called RODBC), using it is far more trouble than it's worth. For a
single worksheet it's far more convenient to first save the Excel file as a text file and then
read the text file into R.
NorwaySO4.txt is a tab-delimited text file
NorwaySO4.csv is a comma-delimited text file

Each text file is set up in such a way that the first row of the file contains the word SO4, identifying
the variable whose measurements are contained in the file. The second row contains the names of
the variables and the subsequent rows contain the data values. The first few lines of the tab-
delimited file are shown in Fig. 1, while Fig. 2 shows the comma-delimited file. The tabs are not
visible but they exist as special characters separating the different columns that correspond to the
different fields in the Excel file.

Fig. 1 Tab-delimited text file

The use of delimiters is not always necessary, but is usually a good idea. We must use delimiters
here because of the presence of missing data. Excel indicates missing data with blanks. The use of
delimiters correctly identifies these missing values. Notice in Fig. 2 that for Lake 1 the SO4
concentration in 1977 is missing and so we find two commas in succession. In Fig. 1 there are
accordingly two tabs in succession (not visible).

 15

Fig. 2 Comma-delimited text file

read.table is a the name of an R function. R uses standard mathematical notation f(x,y,z) to specify
functions and their arguments, so parentheses are always required with functions although
sometimes it is not necessary to specify any arguments.

The arguments we need to specify here:

1. The location of this file on the web with the complete path enclosed in quotes. You may
use single or double quotes, but you must not mix them as part of the same argument.

2. The argument skip=1 to tell R to skip the first line of the file.
3. The argument header=TRUE to indicate that the variable names appear at the top of the

file.
4. The argument sep=',' to indicate a comma-delimited file or the argument sep='\t' to

indicate a tab-delimited file.
5.

To save the output of the read.table function, use the assignment operator, <- , to assign the output
to an object in R
Read the tab-delimited file into R as follows. The name I choose for the result in R is so4. R is case-
sensitive so so4, So4, SO4 all represent different objects.

Read in tab-delimited data from Web
> so4<-
read.table('http://www.unc.edu/courses/2007spring/enst/562/001/dat
a/lab1/NorwaySO4.txt', skip=1, header=TRUE, sep='\t')
Read in comma-delimited data from the Web
> so4<-
read.table('http://www.unc.edu/courses/2007spring/enst/562/001/dat
a/lab1/NorwaySO4.csv', skip=1, header=TRUE, sep=',')

 16

4.C. Getting Information about Data Frames
The object so4 that we've created in R is called a data frame. Data frames look like matrices but the
elements of data frames can be mixtures of character and numeric data. More formally data frames
are tightly coupled collections of variables that share many of the properties of matrices and of lists.
They are the fundamental data structures for most of R's modeling functions.

The dim function is used to determine the dimensions of a data frame.
> dim(so4)
[1] 48 7

From the output we see that there are 48 rows and 7 columns. The output is a vector and we can
access the individual entries using standard vector notation.

> dim(so4)[1]
[1] 48
> dim(so4)[2]
[1] 7

The functions colnames and rownames return the column names and row names of the data frame.

> colnames(so4)
[1] "Lake" "Latitude" "Longitude" "X1976" "X1977"
"X1978" "X1981"

> rownames(so4)
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"
[13] "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "23" "24"
[25] "25" "26" "27" "28" "29" "30" "31" "32" "33" "34" "35" "36"
[37] "37" "38" "39" "40" "41" "42" "43" "44" "45" "46" "47" "48"

What’s returned are vectors of character data. If you use just the names function you get the column
names only.

> names(so4)
[1] "Lake" "Latitude" "Longitude" "X1976" "X1977"
"X1978" "X1981"

Observe that R has appended an X in front of the names of the years. Variable names cannot start
with a number.

In S-Plus, the commercial cousin of R, the rownames and colnames functions don’t exist. Instead
use the dimnames function.

 17

> dimnames(so4)
[[1]]
[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"
[13] "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "23" "24"
[25] "25" "26" "27" "28" "29" "30" "31" "32" "33" "34" "35" "36"
[37] "37" "38" "39" "40" "41" "42" "43" "44" "45" "46" "47" "48"
[[2]]
[1] "Lake" "Latitude" "Longitude" "X1976" "X1977"
"X1978" "X1981"

The dimnames function returns an object called a list. Notice the double bracket notation. Lists are
useful when elements are of different lengths (as they are here) or of different types. To access the
second element of this list, use the double bracket notation:

> dimnames(so4)[[2]]
[1] "Lake" "Latitude" "Longitude" "X1976" "X1977"
"X1978" "X1981"

To access the third element of the second element of the list:

> dimnames(so4)[[2]][3]
[1] "Longitude"

 18

4.D. Accessing elements of data frames
Because a data frame is both a matrix and a list, we can use either notation to access its elements.
Let’s examine matrix notation first using row and column numbers.

so4[2,3] returns the element in row 2 and column 3 of the data frame so4.

> so4[2,3]
[1] 6.3

Specifying a row number followed by a comma and then no column number inside the brackets
returns the entire row. Below I get the second row. The NA that appears in the output is the missing
code in R. It stands for "not applicable".

> so4[2,]
 Lake Latitude Longitude X1976 X1977 X1978 X1981
2 2 58.1 6.3 5.5 NA 6.2 4.8

Specifying a comma followed by a number inside the brackets returns an entire column. Below I get
the third column.

> so4[,3]
 [1] 7.2 6.3 7.9 8.9 7.6 6.5 7.3 8.5 9.3 6.4 7.5 7.6 9.8
[14] 11.8 6.2 7.3 8.3 8.9 12.0 5.9 10.2 12.2 5.5 7.3 10.0 12.2
[27] 5.0 5.6 6.9 9.7 10.8 4.9 5.5 4.9 5.8 7.1 6.4 6.7 8.0
[40] 7.1 6.1 11.3 9.4 7.6 7.3 6.3 11.5 4.6

Get two adjacent rows. The colon notation is used to generate a sequence of numbers. Thus 2:5
yields the vector (2, 3, 4, 5).

> so4[2:3,]
 Lake Latitude Longitude X1976 X1977 X1978 X1981
2 2 58.1 6.3 5.5 NA 6.2 4.8
3 4 58.5 7.9 4.8 6.5 4.6 3.6

Get 3 rows not all adjacent. Here we use the c function of R to concatenate the terms into a vector.

> so4[c(2:3,5),]
 Lake Latitude Longitude X1976 X1977 X1978 X1981
2 2 58.1 6.3 5.5 NA 6.2 4.8
3 4 58.5 7.9 4.8 6.5 4.6 3.6
5 6 58.7 7.6 3.7 4.2 3.3 2.9

We can also specify column elements by name (row elements too if they had names). Here I select
the 1976 SO4 values. Notice that the variable name appears in quotes and is used instead of the
column number.

 19

> so4[,"X1976"]
 [1] 6.5 5.5 4.8 7.4 3.7 1.8 2.7 3.8 8.4 1.6 2.5 3.2 4.6 7.6 1.6 1.5 1.4
[18] 4.6 5.8 1.5 4.0 5.1 NA 1.4 3.8 5.1 2.8 1.6 1.5 3.2 2.8 3.0 0.7 3.1
[35] 2.1 3.9 1.9 5.2 5.3 2.9 1.6 13.0 5.5 2.8 1.6 2.0 5.8 NA

An alternative way of obtaining the same column is with list notation. In list notation we specify the
data frame name followed by a $ sign followed by the variable name (unquoted).

> so4$X1976
 [1] 6.5 5.5 4.8 7.4 3.7 1.8 2.7 3.8 8.4 1.6 2.5 3.2 4.6 7.6 1.6 1.5 1.4
[18] 4.6 5.8 1.5 4.0 5.1 NA 1.4 3.8 5.1 2.8 1.6 1.5 3.2 2.8 3.0 0.7 3.1
[35] 2.1 3.9 1.9 5.2 5.3 2.9 1.6 13.0 5.5 2.8 1.6 2.0 5.8 NA

4.E. Attaching a data frame
Notice that to access a variable in a data frame we had to also specify the name of the data frame.
Using the name of a variable all by itself does not work.

> X1976
Error: object "X1976" not found
> "X1976"
[1] "X1976"

The reason for this is that the data frame is currently not part of the R search path. R doesn't try to
look in the data frame for the variables. To add a data frame to the search path use the attach
function.

> attach(so4)

Now R can see the variable.

> X1976
 [1] 6.5 5.5 4.8 7.4 3.7 1.8 2.7 3.8 8.4 1.6 2.5 3.2 4.6 7.6 1.6 1.5 1.4
[18] 4.6 5.8 1.5 4.0 5.1 NA 1.4 3.8 5.1 2.8 1.6 1.5 3.2 2.8 3.0 0.7 3.1
[35] 2.1 3.9 1.9 5.2 5.3 2.9 1.6 13.0 5.5 2.8 1.6 2.0 5.8 NA

Attaching data frames can lead to confusion. If you change an entry in a variable from a data frame
that has been attached, e.g., X1976[5]<-10, R makes another copy of the variable in the
workspace with the changed entry, but doesn't change the variable in the data frame itself. A worse
situation can arise if a variable name in a data frame matches a variable name for an object that
already existed in the workspace. When this happens the latest variable shadows the first. If you're
not aware that this has happened you may end up referencing the wrong variable. Because of the
confusion that can result I recommend not attaching data sets as a general practice, but you will see
this used in vignettes and examples. To undo the attachment, use the detach function.

> detach(so4)

Now the variable X1976 is again invisible to R.

 20

4.F. Descriptive Statistics For Data Frames
The mean function calculates the mean of variables. If we try to use it to obtain the mean of the
1976 sulfate concentrations we get a surprise.

> mean(so4[,4])
X1976
NA

The problem is that there are missing values in this variable and arithmetic on missing values is
undefined. We need to remove them first. The mean function has an optional argument that will do
this for us. Recall that, to get help on a function you can enter a ? followed by the name of the
function. This brings up the help window.

> ?mean

From the help window you should see that there is an argument, na.rm, which can be used to
remove missing values. We just need to set its value to TRUE.

> mean(so4[, 4], na.rm=TRUE)
X1976
3.743478

The help screen for mean tells us that "there are methods for numeric data frames, numeric vectors
and dates". R is an object-oriented language meaning functions are written in such a way that they
behave differently for different kinds of objects. If we apply mean to the four columns containing
sulfate concentrations in different years we get the mean for each year.

> mean(so4[, 4:7], na.rm=TRUE)
 X1976 X1977 X1978 X1981
3.743478 3.978125 3.715217 3.334091

You can also round the values. The second argument to the round function is the number of
decimals to display.

> round(mean(so4[,4:7],na.rm=TRUE),2)
X1976 X1977 X1978 X1981
 3.74 3.98 3.72 3.33

Not all functions behave this way. The function sum returns a single number when given a matrix
because it is not vectorized the way mean is.

> sum(so4[,4:7],na.rm=TRUE)
[1] 617.1

 21

To force the sum function to return separate sums for each column, use the apply function. The
apply function has three required arguments:

1. The first argument is a matrix to operate on.
2. The second argument is the number 1 if we wish to operate on the rows of the matrix or

the number 2 if we wish to operate on columns.
3. The last argument is the function we wish to apply to the matrix.

The sum function behaves like the mean function when it encounters missing values.

> apply(so4[,4:7],2,sum)
X1976 X1977 X1978 X1981
 NA NA NA NA

We need to pass the na.rm=TRUE argument to sum in order to first remove the missing values.
This can be done by specifying it as an additional argument to apply.

> apply(so4[,4:7],2,sum,na.rm=TRUE)
X1976 X1977 X1978 X1981
172.2 127.3 170.9 146.7

An alternative approach is to create what's called a generic function. This is a function that's created
on the fly. A generic function begins with the key word function followed by parentheses with the
variable for the function inside the parentheses. This is followed by a formula using that variable.
Here's how we would write a generic function within the apply function that takes the sums of non-
missing values.

> apply(so4[,4:7],2,function(x) sum(x,na.rm=TRUE))
X1976 X1977 X1978 X1981
172.2 127.3 170.9 146.7

 22

4.G. Changing the Form of a Data Set from Wide to Long
Currently the so4 data frame has the sulfate concentrations spread across four columns. Each
column corresponds to a different year of sampling. While this was a convenient way to enter the
data, it is not a format that is useful for statistical analysis. For example, we might want to plot the
sulfate concentrations for each year, which means we want to treat the concentration as the y-
variable and year as the x-variable. For this we need the four columns of sulfate concentrations
stacked in a single column and there should be a second column that records the year in which the
sulfate concentration was measured. The lake, latitude, and longitude columns would need to be
adjusted accordingly.

As you might expect, because moving between the two formats is a fairly common task, there is an
R function that does this. It's called reshape. Rather than illustrate this function I'm going to show
you how this can be done using the more primitive functions unlist and rep because these functions
are very useful in their own right.
Stacking the four columns of sulfate concentrations in a single column is easily done with the unlist
function.

> unlist(so4[,4:7])
 X19761 X19762 X19763 X19764 X19765 X19766 X19767 X19768
 6.5 5.5 4.8 7.4 3.7 1.8 2.7 3.8
 X19769 X197610 X197611 X197612 X197613 X197614 X197615 X197616
 8.4 1.6 2.5 3.2 4.6 7.6 1.6 1.5
X197617 X197618 X197619 X197620 X197621 X197622 X197623 X197624
 1.4 4.6 5.8 1.5 4.0 5.1 NA 1.4
X197625 X197626 X197627 X197628 X197629 X197630 X197631 X197632
 3.8 5.1 2.8 1.6 1.5 3.2 2.8 3.0
X197633 X197634 X197635 X197636 X197637 X197638 X197639 X197640
 0.7 3.1 2.1 3.9 1.9 5.2 5.3 2.9
X197641 X197642 X197643 X197644 X197645 X197646 X197647 X197648
 1.6 13.0 5.5 2.8 1.6 2.0 5.8 NA
 X19771 X19772 X19773 X19774 X19775 X19776 X19777 X19778
 NA NA 6.5 7.6 4.2 NA 2.7 3.7
 X19779 X197710 X197711 X197712 X197713 X197714 X197715 X197716
 9.1 2.6 2.7 NA NA 9.1 2.4 1.3
X197717 X197718 X197719 X197720 X197721 X197722 X197723 X197724
 1.6 NA 6.2 1.6 3.9 5.7 NA 1.0
X197725 X197726 X197727 X197728 X197729 X197730 X197731 X197732
 3.3 5.8 3.2 NA 1.5 NA 1.7 1.9
X197733 X197734 X197735 X197736 X197737 X197738 X197739 X197740
 1.8 NA 1.9 1.5 1.9 NA NA NA
X197741 X197742 X197743 X197744 X197745 X197746 X197747 X197748
 1.5 15.0 5.9 NA 1.6 NA 6.9 NA
 X19781 X19782 X19783 X19784 X19785 X19786 X19787 X19788
 7.3 6.2 4.6 6.8 3.3 1.5 2.3 3.6
 X19789 X197810 X197811 X197812 X197813 X197814 X197815 X197816
 8.8 1.8 2.8 2.7 4.9 9.6 2.6 1.9
X197817 X197818 X197819 X197820 X197821 X197822 X197823 X197824
 1.8 5.3 5.9 NA 4.9 5.4 1.4 1.1
X197825 X197826 X197827 X197828 X197829 X197830 X197831 X197832
 3.1 5.0 1.6 NA 1.4 2.6 1.9 1.5
X197833 X197834 X197835 X197836 X197837 X197838 X197839 X197840

 23

 1.5 2.4 1.3 1.7 1.5 5.6 5.4 2.9
X197841 X197842 X197843 X197844 X197845 X197846 X197847 X197848
 1.7 13.0 5.7 2.6 1.4 2.4 5.9 2.3
 X19811 X19812 X19813 X19814 X19815 X19816 X19817 X19818
 6.0 4.8 3.6 5.6 2.9 1.8 2.1 3.8
 X19819 X198110 X198111 X198112 X198113 X198114 X198115 X198116
 8.7 1.5 2.9 2.9 4.9 7.6 2.0 1.7
X198117 X198118 X198119 X198120 X198121 X198122 X198123 X198124
 1.8 4.2 5.4 NA 4.3 4.3 1.3 1.2
X198125 X198126 X198127 X198128 X198129 X198130 X198131 X198132
 NA 4.2 NA 1.6 1.6 2.3 1.8 1.7
X198133 X198134 X198135 X198136 X198137 X198138 X198139 X198140
 1.5 2.2 1.6 NA 1.7 3.9 4.2 2.2
X198141 X198142 X198143 X198144 X198145 X198146 X198147 X198148
 1.9 10.0 4.8 3.0 1.8 2.0 5.8 1.6

From the output and the labels R has created we see that the values are arranged by year with all the
1976 values coming first, followed by the 1977 values, etc.

To generate the year labels and to reorganize the lake, latitude, and longitude columns we use the
rep function. I start by illustrating how rep works for some simple examples. The rep function
takes two arguments.

1. The first argument is the object to replicate. It can be a scalar or a vector.
2. The second argument describes how many times it should be repeated. This value can be

a scalar or a vector and the choice yields very different consequences, as I'll now illustrate.

4.H. Examples on Use of the rep function
Repeat the number 5 ten times:

> rep(5,10)
 [1] 5 5 5 5 5 5 5 5 5 5

Create the sequence 2,5,2,5, ..., 2,5 where 2,5 appears ten times:

> rep(c(2,5),10)
 [1] 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5

Create a sequence of ten 2s followed by ten 5s:

> rep(c(2,5),c(10,10))
 [1] 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5

This can also be accomplished by nesting a rep within a rep:

> rep(c(2,5),rep(10,2))
 [1] 2 2 2 2 2 2 2 2 2 2 5 5 5 5 5 5 5 5 5 5

 24

4.I. …Back to Creating the Long Data Set
For years we need 48 values of 1976, followed by 48 copies of 1977, etc. This is the third example
of using rep given above.

> rep(c(1976:1978, 1981), rep(48, 4))
 [1] 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976
 [14] 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976
 [27] 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976 1976
 [40] 1976 1976 1976 1976 1976 1976 1976 1976 1976 1977 1977 1977 1977
 [53] 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977
 [66] 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977
 [79] 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977 1977
 [92] 1977 1977 1977 1977 1977 1978 1978 1978 1978 1978 1978 1978 1978
[105] 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978
[118] 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978
[131] 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978 1978
[144] 1978 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981
[157] 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981
[170] 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981
[183] 1981 1981 1981 1981 1981 1981 1981 1981 1981 1981

For lakes we need the entire sequence of lake values repeated four times. (Latitude and longitude
should be handled the same way.) This is the second example illustrating the use of rep above.

> rep(so4$Lake,4)
 [1] 1 2 4 5 6 7 8 9 10 11 12 13 15
 [14] 17 18 19 20 21 24 26 30 32 34-1 36 38 40
 [27] 41 42 43 46 47 49 50 57 58 59 65 80 81
 [40] 82 83 85 86 87 88 89 94 95-1 1 2 4 5
 [53] 6 7 8 9 10 11 12 13 15 17 18 19 20
 [66] 21 24 26 30 32 34-1 36 38 40 41 42 43 46
 [79] 47 49 50 57 58 59 65 80 81 82 83 85 86
 [92] 87 88 89 94 95-1 1 2 4 5 6 7 8 9
[105] 10 11 12 13 15 17 18 19 20 21 24 26 30
[118] 32 34-1 36 38 40 41 42 43 46 47 49 50 57
[131] 58 59 65 80 81 82 83 85 86 87 88 89 94
[144] 95-1 1 2 4 5 6 7 8 9 10 11 12 13
[157] 15 17 18 19 20 21 24 26 30 32 34-1 36 38
[170] 40 41 42 43 46 47 49 50 57 58 59 65 80
[183] 81 82 83 85 86 87 88 89 94 95-1
48 Levels: 1 10 11 12 13 15 17 18 19 2 20 21 24 26 30 32 34-1 ... 95-1

To assemble the individual columns into a new data frame we use the data.frame function. I enter
things in the order concentrations, years, lakes, latitude, longitude.

> temp2 <- data.frame(unlist(so4[,4:7]), rep(c(1976:1978, 1981),
rep(48,4)), rep(so4$Lake, 4), rep(so4$Latitude, 4),
rep(so4$Longitude, 4))

By default the columns are named with the formulas we used to create each column. To change the
names to something sensible use the colnames function again but this time by assigning new values
for the column names. Also change the row names to just the sequential row numbers.

 25

> colnames(temp2)<-c('SO4','Year','Lake','Latitude','Longitude')
> rownames(temp2)<-1:dim(temp2)[1]

Examine the first ten rows of the new data frame we've created:

> temp2[1:10,]
 SO4 Year Lake Latitude Longitude
1 6.5 1976 1 58.0 7.2
2 5.5 1976 2 58.1 6.3
3 4.8 1976 4 58.5 7.9
4 7.4 1976 5 58.6 8.9
5 3.7 1976 6 58.7 7.6
6 1.8 1976 7 59.1 6.5
7 2.7 1976 8 58.9 7.3
8 3.8 1976 9 59.1 8.5
9 8.4 1976 10 58.9 9.3
10 1.6 1976 11 59.4 6.4

Suppose we wanted again to obtain the mean sulfate concentration for all lakes in each year, but
using the new data frame in which concentrations and years are in separate columns. Once again a
member of the "apply" family comes to the rescue. The tapply function is designed to do what's
called subset analysis. It requires three arguments.

1. The name of the variable to which a function will be applied.
2. A categorical variable (or list of categorical variables) defining the subsets for which we

want separate summaries.
3. The function to use, either a name of a function or a formula.

If we are using a named function that has additional arguments, these arguments can appear as
additional arguments to tapply and are listed after the function name. The following use of tapply
attempts to get the mean sulfate concentration in each year.

> tapply(temp2$SO4,temp2$Year,mean)
1976 1977 1978 1981
 NA NA NA NA

We get a missing mean for each year because there are missing values in each year. We need to
strip out the missing values using the na.rm=TRUE option of the mean function. Here are two
correct ways of getting the results.
Specify na.rm=TRUE as a fourth argument to tapply.

> tapply(temp2$SO4,temp2$Year,mean,na.rm=T)
 1976 1977 1978 1981
3.743478 3.978125 3.715217 3.334091

Write a generic function that uses mean but in which we specify na.rm=TRUE explicitly as an
argument.

 26

> tapply(temp2$SO4,temp2$Year,function(x) mean(x,na.rm=T))
 1976 1977 1978 1981
3.743478 3.978125 3.715217 3.334091
4.J. Graphing the Data
To compare the distributions of the samples in the four years a nice graphical device is to produce
side-by-side boxplots. This can be done with the boxplot function in R. The basic syntax is
boxplot(y~x) where y is the variable to be plotted and x is the grouping variable. I elect to use
list notation (the $ notation) to reference the variables in the data frame. Fig. 5 shows the result.

> boxplot(temp2$SO4~temp2$Year)

Fig. 5 Box plot of sulfate concentrations by year

The box locates the middle 50% of the data. The bottom edge of the box denotes the 1st quartile, the
top edge locates the 3rd quartile, and the horizontal line inside the box corresponds to the median.
The distance between the quartiles is called the inter-quartile range (IQR). The "whiskers" run out
to the smallest and largest observations inside the inner fences that are located 1.5 times the IQR
beyond each quartile. Observations beyond the inner fences are plotted individually and are outliers.

A nice addition to a box plot is to include the location of the mean for each group. The boxplot
function is an example of a high-level graphics command in R. A high-level graphics function is
one that clears the graph window and produces a new plot when it is used. There are many low-
level graphics functions that will add elements to existing plots. One of these functions is points.

The points function does not use the ~ notation. Instead the first argument is a list of x-coordinates
and the second argument is the corresponding list of y-coordinates. Additional arguments can
follow, including the following:

1. pch= followed by a number that denotes the desired print character.

 27

2. col= followed by the number 1 through 8 to denote one of R's base colors, or one of the
more than 600 colors available in R that can be specified by name. To see a full list of colors go to
http://research.stowers-institute.org/efg/R/Color/Chart/index.htm.

3. cex= followed by a number that indicates the character expansion ratio. A number like 0.5
would plot symbols at one half the default size.

The years are actually plotted at locations 1:4 in the plot (not the actual year values as is obvious
from the fact that the years are equally spaced in Fig. 5). The means for each year were obtained
using the tapply function above. I add a red asterisk to each box to denote the mean.
> points(1:4,tapply(temp2$SO4, temp2$Year, function(x)
mean(x,na.rm=T)), pch=8, col=2, cex=1.1)

Fig. 6 Adding the group means to the box plots

If there aren't too many data values it can be useful to superimpose the raw data on top of the box
plots. Here we have 48 observations per year, which may be a bit much, but I'll go ahead anyway.

The raw data can be added with another points call this time specifying the actual x-locations on the
boxplot as the x-values and temp2$SO4 as the y-values. The locations are 1:4 and we will need to
repeat each of them 48 times. The years are in consecutive order so rep(1:4,rep(48,4)) will
correctly plot the concentrations at the proper years. Here's what I have in mind.

> points(rep(1:4, rep(48,4)), temp2$SO4, pch=16, col='seagreen',
cex=.5)

A problem with the above command is that data values all end up along the midline of the boxes
with many of them overlapping. We can get around this by jittering the points randomly in the x-
direction by applying the jitter function to the x-coordinates as shown below.

> points(jitter(rep(1:4,rep(48,4))), temp2$SO4, pch=16,
col='seagreen', cex=.5)

 28

One problem with this plot (left side of Fig. 7) is that the outliers are being plotted twice, once from
the boxplot command and then a second time in the points command. Because they are jittered the
second time the two versions don't coincide on the plot. There is an option in the boxplot function,
outline=FALSE, that turns off the printing of the outliers. I rerun the boxplot command and the
two points commands to produce the plot shown in the right half of Fig. 7.

> boxplot(temp2$SO4~temp2$Year, outline=FALSE)
> points(1:4,tapply(temp2$SO4,temp2$Year, function(x)
mean(x,na.rm=T)), pch=8, col=2, cex=1.1)
> points(jitter(rep(1:4,rep(48,4))), temp2$SO4, pch=16, col='seagreen', cex=.5)

Fig. 7 Adding the jittered raw data to the plot. In the right graph the option outline=FALSE was used in boxplot to

suppress the plotting of outliers

Finally it would be nice to have a label on the y-axis to indicate that SO4 concentrations are being
plotted. Labels for y- and x-axes are specified with the ylab and xlab arguments to boxplot. R
supports mathematical typesetting and we can specify SO4 in the label as follows:
ylab=expression("SO"[4]) . Here's the final boxplot call.

> boxplot(temp2$SO4~ temp2$Year, outline=FALSE,
ylab=expression("SO"[4]))
> points(1:4,tapply(temp2$SO4, temp2$Year, function(x)
mean(x,na.rm=T)), pch=8, col=2, cex=1.1)
> points(jitter(rep(1:4, rep(48,4))), temp2$SO4, pch=16,
col='seagreen', cex=.5)

Fig. 8 Final box plot

