DR. CLARK'S REFERENCE CARD FOR GETTING STARTED WITH R

Object *classes*: Very important!! Determine how R will handle that object: as.numeric(), as.integer(), as.character(), as.factor()

Operators

	l • • • • • • • • • • • • • • • • • • •
<-	Assignment operator.
> , < , >=	Greater, less than, not equal to
, <= , !=	
#	Comment symbol
" " or ' '	Use to surround text strings
,	(comma) Separator between items
	Missing data. If your data contain "NA"s they may affect
NA	calculations. Many functions accept the argument
	na.rm=T
1:3	the vector 1, 2, 3
+, -, /,	Typical math notation for addition, subtraction, division,
*, ^	multiplication, exponents
~	Formula symbol to use instead of equal sign in formulas
	(e.g. y ~ x)

General functions

c()	Create a vector of the specified elements inside
which()	Find elements inside a vector that satisfy a
	condition
str()	Learn more about the structure of an object
head() or tail()	View the first or last 6 entries in a data.frame
help()	Access the help documentation for a function
<pre>install.package()</pre>	Install a new package for the first time
library()	Load an installed package
summary()	Output depends on the nature of the object
	provided
sqrt()	Take the square root
log()	Takes the <u>natural</u> log In
class()	Get information about or set the "class" of an object
data()	Load a provided dataset
View(m1)	view data frame m1

Indexing

m1[r1, c1]	view entry at row 1, column 1, where
	r1 and c1 are numbers
m1[, c1]	view entirety of column 1
m1[, 1:3]	Select or view first three columns

m1\$a1	Also view entirety of column 1, where
	a1 is a column name
m1[, "a1"]	Also selects column named a1, where
	a1 is a name
m1[, c("a1", "a2",	Select columns a1, a2, and a3 by
"a3")]	name
m1[which(m1\$a1 ==	For all rows of column a1 that equal
"thing"), "a2"]	"thing," display value for entry in
	column a2

Plotting functions

Plotting functions	
hist()	Frequency histogram
$plot(y \sim x)$, $plot(x, y)$	Scatter and line plots
$plot(y \sim x, type = "l")$	Line plot without points
$plot(y \sim x, type = "b")$	Lines and points plotted
points()	Add points to existing plot
	(overlay)
abline()	Lines from a to b.
barplot()	Barplots
boxplot(y ~ x),	Boxplots
boxplot(y ~ x * z)	
axis(side=1, at=1:3,	Create a "custom" plot axis
tick=TRUE, c("label 1",	
"label 2", "label 3")	
mtext()	Add text to the margins of a plot
par(mfrow = c(1, 2))	Create a 2-panel figure with 1 row
	and 2 columns
<pre>legend("bottomright",</pre>	Add a legend to the plot
fill=c("red", "blue"),	
<pre>legend = c("first</pre>	
thing", "second thing"))	
pdf("filename.pdf",	Will save your plot as a pdf with
height=5, width=4)	dimensions that you specify.
# plot drawing	amineriolis man you opening.
commands	
dev.off()	

Graphical parameters – add as arguments to plotting functions above

xaxt	If xaxt="n" the x-axis is set but not drawn (useful	
xaxt	in conjunction with axis(side=1,)	
main	Main title	
xlab, ylab	Label for x axis or y axis	
xlim, ylim	Axis limits for x and y axis	
col	Color. Check colorbrewer.org for good color	
COI	schemes.	

DR. CLARK'S REFERENCE CARD FOR GETTING STARTED WITH R

lwd	line width
pch	Symbol shape
cex	Symbol size

Descriptive Statistics

<pre>max(), min(), mean(), median(), sum(), var(), sd(), range()</pre>	Refer to Guidelines for what each of these means
sd(x) / sqrt(length(x))	Calculate the standard error of the mean (no built-in function for this)
summary(data.frame)	Summary information for all columns in a data frame
<pre>tapply(x1, list1, function1)</pre>	Apply function to x1 by list1

Comparative Statistics

Comparative Statistics		
aov(y1 ~ x1 * x2, data=m1),	Two-way Analysis of Variance of	
anova(y1 ~ x1 * x2,	response variable y1 as it relates to	
data=m1)	factors x1 and x2, including the	
	interaction term.	
summary(aov.object) or	Returns statistical results of Analysis	
summary(aov(y~x))	of Variance object	
TukeyHSD(aov(y~x))	Post-hoc pairwise Tukey test for the	
	Anova specified	
$lm(y1 \sim x1, data=m1)$	Linear regression of response	
	variable y1 as related to continuous	
	predictor variable x1	
summary(lm.object) or	Returns statistical results of linear	
summary(lm(y~x))	regression object	
t.test(y ~ x, data=m1) or	Unpaired, two-sided t-test. See	
t.test(m1\$y, m2\$y)	guidelines for one-sided tests.	
t.test(y ~ x, data=m1,	Paired t-test	
paired="true")		
chisq.test()	Method for calculating a chi-squared	
	statistic in R. Recommend you	
	calculate this by hand instead.	

Advanced Methods: Line plots for 2 or more lines that include points, lines, and error bars. Assumes each treatment group is in its own dataset named "tx1" etc, which contains a column that indicates the x-axis position called "xvar" and another column with the measurement of interest called "yvar"

```
library("tidyverse") # run install.packages() the first time to
install this package

# Calculate standard deviation for first treatment group.
Repeat process for subsequent treatment groups.

txlsd <- txl %>%
    group_by(xvar) %>%
    summarise(meany = mean(yvar), sdy = sd(yvar))

# Start plot:
plot(txlsd$meany ~ txlsd$xvar, ...)

# Overlay next lines for next treatment group:
points(tx2sd$meany ~ tx2sd$xvar, ...)

# Add standard error bars for each treatment group:
arrows(txlsd$xvar, txlsd$meany - txlsd$sdy, txlsd$xvar,
txlsd$meany + txlsd$sdy, length = 0.05, angle = 90, code = 3)
```